Современные риск-системы
Границы коэффициента корреляции

Сайты-компаньоны: English version Риск-консалтинг

Начало Введение Лекции Загрузка Стресс Публикации Иллюстрации Справочник Избранное Глоссарий Ссылки Доска Контакт


Хорошо известно, что значение коэффициента корреляции

(1)

двух случайных величин X и Y не может выходить за пределы интервала от -1 до 1. Отсюда часто возникает иллюзия, что какими бы ни были распределения X и Y, их корреляция может принимать произвольные значения в этом интервале. Иногда это справедливо. Например, если X и Y имеют нормальные распределения, то их корреляция действительно может иметь любое значение между -1 и 1. Однако, в общем случае это неверно. На данной странице приведены примеры маргинальных распределений компонент случайного вектора (X,Y), при которых диапазон значений коэффициента корреляции его компонент оказывается уже, чем [-1,1].

Распределения Бернулли

Пусть случайные величины X и Y имеют распределения Бернулли с параметрами p, q, соответственно, то есть,

P( X = 1 ) = p, P( X = 0 ) = 1 - p,
P( Y = 1 ) = q, P( Y = 0 ) = 1 - q.
(2)

Тогда их совместное распределение вполне определяется параметром m = P ( X = 1, Y = 1 ), значения которого лежат в границах Фреше [max(0 , p+q-1) , min(p , q)]. Значение коэффициента корреляции в данном примере равно

. (3)

Границы Фреше для m, а также интервал возможных значений коэффициента корреляции при различных значениях параметров p, q приведены в следующей таблице.

p q Интервал для m Интервал для r(X,Y)
0.2 0.6 [0 , 0.2] [-0.612 , 0.408]
0.2 0.8 [0 , 0.2] [-1 , 0.25]
0.4 0.8 [0.2 , 0.4] [-0.612 , 0.408]
0.6 0.8 [0.4 , 0.6] [-0.408 , 0.612]

Почему ?

Как известно из теории, равенство коэффициента корреляции 1 эквивалентно наличию между случайными величинами X и Y линейной зависимости Y = a X + b с положительным коэффициентом a. Другими словами, случайная величина Y получается из случайной величины X преобразованиями сдвига и масштаба, которые не изменяют форму распределения. Поэтому между случайными величинами, имеющими распределения различной формы, не может быть идеальной положительной корреляции.

Аналогично, равенство r(X,Y) = -1 означает совпадение формы распределений случайных величин X и -Y; если формы этих распределений различны, то между X и Y не может быть идеальной отрицательной корреляции. И чем сильнее отличаются формы X и Y ( -Y), тем дальше лежат возможные значения коэффициента корреляции от 1 (-1).



Пользовательского поиска

Начало Введение Лекции Загрузка Стресс Публикации Иллюстрации Справочник Избранное Глоссарий Ссылки Доска Контакт
Copyright © 2000-2017, А.А.Новоселов Последние изменения внесены 28.03.2014