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Abstract 
Building a model of individual preferences is a key for rational decision-making under 

uncertainty. Solution of this inverse problem may be simplified by proper using of available 
information. The present paper introduces the concept of characteristic class of a family of 
preferences, and presents usage of the concept for solving inverse problems. Characteristic 

classes for a number of families of preferences have been calculated. 
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Introduction 
 
Decision-making under risk usually reduces to choosing the best probability 

distribution in a predefined set of distributions [1], where “the best” means the most 
preferable distribution in the sense of individual preferences. The preferences may often be 
represented by a real functional [1, 2] called risk measure; a classic representation of the sort 
is the representation of linear preferences by expected utility functional [3]. 

Since preferences differ for different decision-makers, it may be a challenging 
problem to build a reasonable preference for a specific problem, or, equivalently, to find a 
representing risk measure. This problem of building a preference relation or representing risk 
measure may be thought of as an inverse problem of risk theory. 

Simplifying of inverse problems may be achieved by restricting them to a small class 
of distributions, if possible. Such simplifying occurs possible in presence of additional 
information about preference relation (risk measure). Specifically, if the preference relation is 
known to belong to a family of preference relations, then the corresponding inverse problem 
is to be solved on a proper subset of the initial domain, which is called a characteristic class 
of the family. Determining the preference on a characteristic class is sufficient for 
reconstructing the complete preference; in other words, the continuation of a preference from 
a characteristic class to the whole domain is unique within the family specified. 

In the present paper we describe the concept of characteristic class and calculate 
characteristic classes for a number of families of risk measures and preferences. 

 
Characteristic classes 
 
Let D  be a set of acts (decisions) and F  be a set of probability distribution functions 

on the real line R . Each decision D∈d  provides a distribution function F∈F , the latter 
representing an uncertain (risky) outcome of a decision d . Let FD →:f  be a mapping 
describing this correspondence, that is, )(dfF =  is a distribution function corresponding to 
d . 



Let also =p  be a preference relation on F , that is, a complete transitive relation on 
F , which is treated as follows: GF =p  means that the distribution F∈G  is at least as good 
as the distribution F∈F , perhaps even better. Alternatively preference relation =p  may be 
thought of as a subset FF×⊆P  of a Cartesian product of F  by itself with clear treatment 
“ GF =p  if and only if PGF ∈),( ”. The decision-making problem essentially consists of 
choosing a decision D∈*d  such that )()( *dfdf =p  for all D∈d . We will also use the 
notation GF p  and GF ~  for asymmetric and symmetric parts of =p , respectively. 

As it was shown in [1], a preference relation =p  may be represented by a real 
functional (risk measure) RF →:µ  in the sense 

 
GF =p    ⇔    )()( GF µµ ≤ ,   F∈GF , .    (1) 

 
In terms of risk measure the decision-making problem may be reformulated as a traditional 
optimization problem 

 

D∈
→

d
df max))((µ .      (2) 

 
If the preference relation =p  or its representing functional µ  is known, solving the 

direct problem (2) may be implemented by standard optimization methods. However, 
preferences of different decision-makers may significantly differ, that is why the functional 
µ  in (2) should be carefully calibrated prior to solving (2). The calibration might be based on 
previous decision-making experience for the decision-maker, as well as on some normative 
principles, which seem relevant for the problem. The calibration constitutes an inverse 
problem, which is considered in brief in what follows. 

Let M  be the set of all risk measures RF →:µ . It is clear that if no additional 
information on µ  is available, then one should determine the value of µ  for all F∈F . Now 
let MN ⊆  be a family of risk measures, and it is known in advance that the risk measure of 
interest µ  belongs to N . The additional information may allow reducing computational 
efforts necessary to build the risk measure µ . To make the statement precise we need a 
concept of characteristic class. 

Definition 1. A subset of distributions FNGG ⊆= )(  is called a characteristic class 
of a family of risk measures N , if for any functional RG →:ν  there exists at most one risk 
measure N∈µ  such that )()( FF νµ =  for all G∈F . 

In other words, on the one hand, some functionals RG →:ν  are restrictions of risk 
measures N∈µ  onto G , and on the other hand, such a continuation µ  of ν  from G  to the 
whole F  is unique (if exists at all). Thus the additional information N∈µ  allows reducing 
the inverse problem from F  to G . This might be a great simplification if a characteristic 
class G  is small. Note that a characteristic class for a family of risk measures N  in general is 
not unique. 

A similar concept may be introduced for preference relations. Let P  be the set of all 
preference relations on F , corresponding to risk measures M∈µ  via (1). Recall that a 
preference relation =p  is also a subset FF×⊆P . Let PQ ⊆  be a family of preference 
relations on F . 

Definition 2. A subset of distributions FQGG ⊆= )(  is called a characteristic class 
of a family of preference relations Q , if for any preference relation GG ×⊆Q  there exists 
at most one preference relation Q∈P  such that PQ ⊆ . 



In other words, any preference relation possesses at most one continuation from a 
characteristic class G  onto the whole set F  within the preferences family Q . 

 
Families of risk measures and classes of distributions 
 
Now let us define some families of risk measures and classes of distributions, which 

we will use in the sequel. For F∈GF ,  we say that G  stochastically dominates F , if 
)()( xGxF ≥  for all real x ; this ordering is denoted by GF 1≤ ; we also write GF 1<  if 

GF 1≤  and GF ≠ . A preference relation =p  is called (strictly) monotone with respect 
stochastic dominance, if GF 1<  implies GF p . A risk measure M∈µ  is called (strictly) 
monotone (with respect to stochastic dominance), if GF 1<  implies )()( GF µµ < . Note that 
monotonicity of a preference is equivalent to monotonicity of the representing (via (1)) risk 
measure µ . Throughout the paper we will assume that all preference relations in P  and all 
risk measures in M  are strictly monotone. In other words, we will restrict our attention to 
money-loving decision-makers. 

Let RR →:U  be a real function. A risk measure 
 

∫
∞

∞−
= )()()( xdFxUFUρ , F∈F      (3) 

 
is called an expected utility functional. The corresponding preference relation =p  satisfies 
the axioms of von Neumann and Morgenstern [3]. The preference relation and the expected 
utility functional are strictly monotonic, if the utility function U  is increasing. Denote uM  
the family of all monotone expected utility functionals, and uP  - the corresponding family of 
all monotone preference relations on F . 

Let ]1,0[]1,0[: →g  be a distortion function, that is, an increasing function with 
0)0( =g  and 1)1( =g . A risk measure 
 

∫ −−= −
1

0

1 )1()()( vdgvFFgπ ,  F∈F      (4) 

 
is called a distorted probability measure [4]. This measure is monotonic, as is the 
corresponding preference relation. Denote dM  the family of all distorted probability 
functionals, and dP  - the corresponding family of all preference relations on F . 

Finally, we will need the combined functional [5] defined by 
 

∫ −−= −
1

0

1
, )1())(()( vdgvFUFgUµ , F∈F ,     (5) 

 
where utility function U  and distortion function g  satisfy the above conditions. The 
functional and the corresponding preference relation are also monotonic. Denote cM  the 
family of all combined functionals, and cP  - the corresponding family of all preference 
relations on F . Note that expected utility functional is a special case of (5) obtained with 

vvg ≡)( , and distorted probability functional is a special case of (5) corresponding to 



xxU ≡)( . Thus the combined functional actually combines expected utility with distorted 
probability. 

For Ra∈ , )1,0(∈p  denote aW  a degenerate distribution function, which means that 
the corresponding random variable aX  is completely defined by 1)( == aXP a , and paB ,  - 
the Bernoulli distribution function, which means that the corresponding random variable paY ,  
is completely defined by paYP pa == )( , , pYP pa −== 1)0( , . For R⊆A  denote also 

},{ AaWaA ∈=W  a class of degenerate distributions, and )}1,0(,,{ , ∈∈= pAaB paAB  - a 
class of Bernoulli distributions. We will also make use of the Bernoulli distributions pB , 

)1,0(∈p , with corresponding random variable pY  satisfying pYP p == )1( , 
pYP p −=−= 1)1( . Denote )}1,0(,{ ∈= pBpB  the set of all such distributions. Values of 

functionals (3)-(5) on degenerate and Bernoulli distributions are presented below: 
 

)()( aUWaU =ρ , 
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Characteristic classes for families of preferences 
 
In [6] characteristic classes for families of expected utilities, distorted probabilities 

and combined functionals have been calculated. These are RWMG =)( u , }1{)( BMG =d  and 

}1{)( BWMG R ∪=c . Here we will calculate characteristic classes for families of 
corresponding preference relations; these occur to significantly differ from their functional 
counterparties. 

Theorem 1. The characteristic class of the von Neumann – Morgenstern family of 
preference relations is equal to BBWPG RR ∪∪=)( u . 

Proof. Since any preference from uP  can be represented by an expected utility 
functional, it suffices to show that defining preference relation on )( uPG  completely defines 
the corresponding utility function. Recall that positive affine transform of a utility function 
does not change the preference it represents, so the values of U  at two points may be chosen 
at will, say, 0)0( =U  and 1)1( =U . With this choice (6) gives )()( aUWaU =ρ  and 

)()( , apUB paU =ρ  for R∈a , )1,0(∈p , in particular, 1)( 1 =WUρ . 
Next, for 1>a  consider all Bernoulli distributions paB ,  such that 1, ~ WB pa . This well 

defines the function )1,0(),1(: →∞h  satisfying 1)(, ~ WB aha . Monotonicity of the preference 
implies that h  decreases, 

 



1)(lim
1

=
→

ah
a

, 0)(lim =
∞→

ah
a

, 

 
which gives 

 
)(/1)( ahaU = , ),1( ∞∈a .     (9) 

 
Next, consider relation pa BW ,1~  for )1,0(∈a . The relation well defines the function 

)1,0()1,0(: →r  such that )(,1~ ara BW , )1,0(∈a , or )()1()()( arUaraU == , thus 
 

)()( araU = , )1,0(∈a .     (10) 
 
Expressions (9), (10) together with initial values at 0=a  and 1=a  completely 

define the utility function U  on ),0[ ∞ . 
Now consider calculation of U  on the negative half-line. First note that there exists 

the unique value )1,0(0 ∈p  such that 0~
0

WBp . This gives the value 
 

0

0

1
)1(

p
p

U
−

−=− .      (11) 

 
The rest is calculated similarly to the case of the positive half-line. There exist 

functions )1,0()1,(: →−−∞−h  and )0),1(()0,1(: −→−− Ur  such that 
 

)(/)1()( ahUaU −−= ,   )1,( −−∞∈a ,   )1()()( −= − UaraU ,   )0,1(−∈a .  (12) 
 

Thus (11) and (12) completely define U  on the negative half-line, and the proof is complete. 
Theorem 2. The characteristic class of the distorted probability preference relation is 

equal to }1{)1,0()( BWPG ∪=d . 
Proof. Since the preference is completely defined by a distortion function g , it 

suffices to calculate it on )1,0( . For any )1,0(∈p  the preference implies the value 
)1,0()( ∈ph  such that )(,1 ~ php WB , which together with (7) gives )()( phpg = , )1,0(∈p . 

The proof is complete. 
 
Conclusion 
 
The concept of characteristic class, introduced in the paper, provides a tool for solving 

inverse problems of risk theory. The tool appears to have rather simple form; the 
characteristic classes for commonly used families of risk measures and preferences contain at 
most diatomic distributions. This gives rise to a hope for successful combining of 
characteristic classes with experiment planning framework, to effectively extract preference 
information via polls or observations of actual decision-making process. 

Characteristic classes of preference relations occur wider than characteristic classes of 
related risk measures. This is natural, since values of risk measures are usually unobservable, 
while preference relation may be easily observed in experiments. 

The concept of characteristic class deserves developing in a number of directions. It 
would be quite useful to find a method for constructing a minimal, perhaps even countable, 



characteristic class. Another interesting topic is building lattice approximate representations 
of risk measures using characteristic classes. 
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