Современные риск-системы
Логнормальное распределение

Сайты-компаньоны: English version Риск-консалтинг

Начало Введение Лекции Загрузка Стресс Публикации Иллюстрации Справочник Избранное Глоссарий Ссылки Доска Контакт


Описание

Говорят, что случайная величина X имеет логнормальное распределение с параметрами μ, σ, если X = exp(Y), где Y имеет нормальное распределение с параметрами μ, σ. Случайная величина с логнормальным распределением является непрерывной, и принимает только положительные значения. Графики плотности (привязан к левой вертикальной оси ординат) и функции (привязан к правой оси ординат) логнормального распределения с параметрами μ = 0, σ = 0.7 приведен на следующем рисунке.

График плотности и функции логнормального распределения

Характеристики

В следующей таблице приведены формулы для вычисления характеристик логнормального распределения.

Плотность распределения
Функция распределения*
Математическое ожидание
Стандартное отклонение
Дисперсия
Асимметрия
Мода
* Функция логнормального распределения F через элементарные функции не выражается. Для приближенного вычисления функции этого распределения с параметрами μ, σ можно воспользоваться формулой F(x) = Φμ,σ(ln x), где Φμ,σ - функция нормального распределения с параметрами μ, σ, способ вычисления которой описан
здесь.

Моделирование

Моделирование значений случайной величины с логнормальным распределением (с параметрами μ, σ) проводится по формуле X = exp(Y), где Y имеет нормальное распределение с теми же параметрами. Моделирование нормальных величин описано здесь.


Пользовательского поиска

Начало Введение Лекции Загрузка Стресс Публикации Иллюстрации Справочник Избранное Глоссарий Ссылки Доска Контакт
Copyright © 2000-2017, А.А.Новоселов Последние изменения внесены 28.03.2014